If it's not what You are looking for type in the equation solver your own equation and let us solve it.
150^3=1/3*3.14*4^2h
We move all terms to the left:
150^3-(1/3*3.14*4^2h)=0
Domain of the equation: 3*3.14*4^2h)!=0We add all the numbers together, and all the variables
h!=0/1
h!=0
h∈R
-(1/3*3.14*4^2h)+3375000=0
We get rid of parentheses
-1/3*3.14*4^2h+3375000=0
We multiply all the terms by the denominator
3375000*3*3.14*4^2h-1=0
Wy multiply elements
127170000h^2*3-1=0
Wy multiply elements
381510000h^2-1=0
a = 381510000; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·381510000·(-1)
Δ = 1526040000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1526040000}=\sqrt{3240000*471}=\sqrt{3240000}*\sqrt{471}=1800\sqrt{471}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-1800\sqrt{471}}{2*381510000}=\frac{0-1800\sqrt{471}}{763020000} =-\frac{1800\sqrt{471}}{763020000} =-\frac{\sqrt{471}}{423900} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+1800\sqrt{471}}{2*381510000}=\frac{0+1800\sqrt{471}}{763020000} =\frac{1800\sqrt{471}}{763020000} =\frac{\sqrt{471}}{423900} $
| x2=7x-30 | | 35/14=50/x | | 6f=6+7f | | 5+17t-15t^2=0 | | u/5+17=38 | | 4(5x-2)=10-22 | | 31x-12=360 | | 7x-13=7x+1 | | 25x-10=12x+16 | | 8x+1×=40+5x | | 5(3h-9)-12=12-7(h-9) | | 6x-4-3x=23 | | (4x+6)=(7x-7) | | 2.5x+.25=1.25+x | | y+3=6y+48 | | 0.4(m-6)=0.8m | | 5/18=32/x | | -9-7x+5x=-11 | | 6(y-7)=2 | | x+.4x=3.5 | | -12m-5-9+4m=8m-13=+15-8 | | 3x+11x=210 | | 18x+19=180 | | -2(-9w+4)-7w=3(w-6)-2 | | 3x+81.1=180 | | 8x+1=37-4 | | 5n-2+4n=9n-2 | | 9/5(68)+32=f | | -37=-5v+3(v-7) | | 13x-9x+20=30x2 | | 2b^2-4b-4=0 | | 931.8=3.27(10)+b |